
2DMI20 - Software Security 
Summary

The 3 pillars of software security 
The 3 pillars of software security are:

1. Risk management

2. Touchpoints (between software development and software security)

3. Knowledge


The 7+1 pernicious kingdoms 
The 7+1 pernicious kingdoms-model is used to abstractly categorize software issues into 8 so-
called kingdoms. These are:

1. Input validation & representation issues

2. API abuse

3. Errors when using security tools/features

4. Parallelism & consistency issues

5. Error handling & output problems

6. Code quality

7. Encapsulation problems

8. Dependence on environment


-measure 
The -measure is a generalization of the -measure, which is also known as the -score. The 
-measure is a measure for ‘accuracy’ which takes into account that the groups of positives and 
negatives may have vastly different sizes.


Note: refer to Canvas for more information about the relevancy of this topic. 

The precision expresses completeness in a quantitative way. It is given by





The recall expresses soundness in a quantitative way. It is given by





Finally, using these measures, the -measure can be computed as





The value of  in the -measure determines the relative importance of recall and precision; more 
precisely, the measure is defined such that recall is  times as important as precision.
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Text Executable code

Data Initialized variables

BSS Segment Uninitialized variables

Heap Dynamically allocated memory

Stack Last-in, first-out memory
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Buffer overflow 
Attacker strategies 

Countermeasures 

Heap and pointer issues 
Some notes: NULL is a dedicated address that pointers cannot access. Dereferencing a pointer is 
another term for using that pointer.


It is easy to confuse the lengths of string and arrays in C, which may lead to off-by-one errors. In 
particular, we note that int char[10]; denotes a string of ‘length 10’, which ranges from 
char[0] to char[9]. However, since the last character in a C string is a termination symbol, 
char[9] is effectively always \0, which makes the actual string have length 9.


Integers are also sensitive to issues. In particular, they are vulnerable to overflow issues; that is, 
when an integer becomes too large, it can, for instance, roll over to restart from 0 or to go from 

Code injection Insert code into the overflown buffer. Cannot contain null bytes/string terminators.

Arc injection Overwrite the return address to jump to another position in the program (e.g. skip 
password check).

Return-to-libc Call functions already defined in memory, in particular those from libc. Allows for what 
is called return-oriented programming, which has a Turing complete set of gadgets in 
x86.

Return-
oriented 
programming

Similar to return-to-libc; however, this time, any arbitrary piece of data can be used to 
represent a function. For instance, by ‘returning’ to an address that points to a function, 
but off by one bit, one can get to data which represents a different set of instructions. 
This (at least in x86) allows for a Turing complete set of gadgets to be accessed/used.

Fat pointers Store length of memory with variable and check bounds at runtime.

Stack canary Insert random value whose integrity is checked just before return address. 
Makes it much more difficult to modify the return address for an attacker, 
although it is vulnerable to situations where the stack content can be read by 
the attacker.

Mark certain regions of memory (i.e. data) as non-executable. Does not prevent 
return-to-libc/return-oriented programming, and does not work with just-in-time 
compilation (e.g. something like Jupyter notebooks).

Address Space Layout 
Randomization (ASLR)

Arrange memory positions of areas like heap, stack and code randomly. This 
makes it much more difficult for the attacker to correctly guess return 
addresses. Disadvantages include the vulnerability against NOP-sleds and 
leakage of ASLR addresses.

Data Execution 
Prevention ( )W ⊕ X

NULL dereference A pointer pointing to NULL is used.

Dangling pointer A pointer points to an address that has been freed.

Use-after-free A pointer is dereferenced after it has been freed.

Double-free A pointer is freed after it has already been freed (and possibly re-allocated to a 
different program).

Memory leak Allocated memory is never freed.
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the most positive integer to the most negative integer. Note that the exact behavior may depend 
on compiler optimizations.


Methods for finding security vulnerabilities 
In general, there are three methods to find security vulnerabilities and/or bugs in software. These 
are:

1. Static code analysis

2. Fuzzing

3. Expert review (also known as penetration testing)


These methods have several advantages and disadvantages:


Since none of the methods finds all bugs, the methods can be used in a complementary manner.


Types of specifications 
There are several types of specifications to formally specify (un)desirable properties that can be 
used in automated testing. We distinguish between:

• History-based specification, which considers the history of the system based on assertions 

which are being made over time.

• State-based specification, which specifies behavior based on system states or series of 

steps.

• Transition-based specification, which describes the system based on transitions between 

system states.

• Functional specification, in which the system is specified as a structure of mathematical 

functions. (This is quite similar to the concept of UCON/usage control from the course on 
Principles of Data Protection.)


• Operational specification, in which concepts like algebras or petri nets are used.


Method Advantages Disadvantages

Static code analysis Automated Can raise false alarms

Cheap (from a computation point of 
view)

Does not find all bugs

Does not require software execution Does not find bugs which depend on 
runtime environment

Covers corner cases

Finding source of bugs is 
straightforward

Fuzzing Automated Computationally expensive

Does not raise false alarms Requires software execution

Can find problems in deployed/
production environment

Does not find all bugs

Testing on production environment may 
be equivalent to an attack

Can find errors in runtime environment Does not cover the entire application

Does not require access to source code Does not indicate which code caused 
the issue

Expert review No false alarms Manual inspection

Requires time (and is costly)

Does not find all bugs
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Safety properties deal with programs never reaching a bad state. Such properties are checked 
using e.g. assertions, a type system, pre- and postconditions or invariants. Liveness properties 
have to do with programs eventually reaching a bad state. Liveness properties are related to e.g. 
program termination and starvation freedom.


Static code analysis 
Static code analysis uses many techniques to analyze source code. These include:

• Formalization and visualization of code dependencies

• Pattern checking (e.g. for code quality rules)

• Binary code instrumentation

It should be noted that many of these techniques overlap with compiler construction techniques.


Call & control flow graphs 
A call graph contains a node for every function. Every edge in a call graph represents a function 
call.


A control flow graph contains a node for every straight-line code fragment (i.e. fragment without 
jumps). An edge in such a graph represents a jump. In the drawings we make for exercises, we 
tend to have the nodes contain a single statement (e.g. x = y - 3).


A static call graph represents every possible run of the program, including every call relationship 
present in the code (even if such a call would never occur in practice). Such a graph is (in general) 
an undecidable problem. Therefore, we usually limit ourselves to dynamic call graphs, which 
consider the parts of code which have been executed in a specific execution of the program.


Program verification 
Program verification aims to establish correspondence between the program’s actual behavior 
and its intended behavior. This can be done using specifications. Although a specification can 
involve a document of some sort, it can also be based on a comparison of the program to a 
different program. In this context, a program is correct if it complies with the specification.


However, due to constraints related to the halting problem, program verification generally 
approximates verification. This is acceptable, in particular because code written by humans is not 
arbitrarily complex.


Some approaches to program verification include:

1. Model checking, which explores all states and transitions in an automated fashion, but does 

not scale well.

2. Deductive verification, which generates proof obligations from the program and its 

specification. As a downside, it requires the user to understand why the system works 
correctly and convey this to the verification system.


3. Abstract interpretation, in which concrete sets of possible values are replaced by more 
abstract representations of that set (possibly of different size). In effect, abstract interpretation 
considers whether a strictly worse version satisfies the specification. (Properties of the 
program to consider can be simplified or split up if necessary.) A problem of abstract 
interpretation is that it still requires educated users.

• As an example, abstract interpretation could check whether division by zero occurs by 

considering what values the denominator could have when a division occurs.


Data flow analysis 
Data flow analysis aims to establish a set of facts at each point in the program. This can be used 
to analyze which program parts exchange data with each other, and also presents the 
dependencies resulting from this. Both forward and backward analysis variants can be used. 
There are several variants of data flow analysis. The classical variants include:

1. Reaching definitions analysis, which aims to find uninitialized variable uses;

2. Available expression analysis, which aims to avoid recomputing expressions;

3. Very busy expression analysis, which aims to reduce code size;
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4. Live variables analysis, which aims to allocate registers efficiently.


Furthermore, there are several modern variants of data flow analysis:

5. Interval analysis, which checks for memory safety;

6. Taint analysis, which checks information flow (e.g. for data leaks or code injection);

7. Type-state analysis, which checks temporal safety properties (e.g. APIs of protocols/libraries);

8. Concurrency analysis, which considers e.g. data races and deadlocks


We will mainly focus on reaching definitions analysis and very busy expressions analysis.


Roughly, the idea of data flow analysis is to analyze the sets of values a variable can have. An 
important thing to note is that sets of possible values are monotonic, i.e. they can only grow or 
shrink. This implies that the set of all possible sets of values forms a lattice and is finite.


Reaching definitions analysis 
In reaching definitions analysis, the aim is to define, for the in- and output of every node  in the 1

control flow graph, pairs of the following form:

<x, 2> <y, 5> 
Such pairs express the names of variables and the points at which that variable’s currently valid 
definition has been made. For example, <x, 2> means that the current value of the variable x 
could have been defined at the node numbered 2. More specifically, if a node would have <x, 2> 
and <x, 4> (and no more rules with x), that means that the current value of x was defined at 
either node 2 or node 4.


In a reaching definitions analysis, the IN and OUT sets (i.e. the sets of pairs at the in- and output 
of a node) for a node can only grow with more iterations of the algorithm. The algorithm for 
determining reaching definitions-pairs starts at the top of the control graph (i.e. at the start of the 
program) and ends at the bottom/exit.


Very busy expressions analysis 
In very busy expressions analysis, the goal is to determine what are known as ‘very busy’ 
expressions at the exit of a point in the control flow graph. An expression is said to be very busy 
‘if, no matter what path is taken, the expression is used before any of the variables occurring in it 
are redefined’. Such an analysis starts at the bottom of the control flow graph (i.e. at the end of 
the program), and works to the top.


A very busy expressions analysis can be used to determine which statements can be pre-
computed before branching.


Differences between reaching definitions and very busy 
expressions analysis 
The following is a tabular summary/comparison of the main differences between reaching 
definitions analysis and very busy expressions analysis.

Property Reaching definitions analysis Very busy expressions analysis

Working direction Top-to-bottom

Begin-to-end

Bottom-to-top

End-to-begin

Initial table cell contents Pairs of the form <var_name, ?> 
for the first cell 
Empty sets (for other cells)

One value for every expression. I.e. if a-
b is computed at some point, every cell 
will contain a set containing a-b. 

Note: the IN-set of the final cell is 
always empty.

Property

 Except for the input of the entry node and the output of the exit node.1
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Pointer analysis 
Pointer analysis is an extension of data flow analysis, which aims to determine the set of objects 
to which a pointer can point. Such an analysis cannot be perfect due to the halting problem, and 
generally focuses on which pointers may alias a certain address. Pointer analysis is difficult 
because pointers can recur infinitely (think of e.g. a linked list, where we can point to the previous 
element of the next element infinitely many times). One way in which pointer analysis can work is 
by simplifying the program to a ‘strictly worse’ program. For instance, a pointer to an array 
element can be simplified to a pointer to the entire array. Alternatively, fields of objects can be 
merged into a pointer to the entire object, or to a group of objects.


Fuzzing definitions 
Fuzzing is the execution of a program  using inputs sampled semi-randomly from an input space 2

which protrudes/exceeds the expected input space of the program. A fuzzer performs fuzz testing, 
which is the use of fuzzing to determine/test whether a program violates a (security) policy.

Some other relevant terms include the concept of a fuzz campaign, which indicates a specific 
execution of the fuzzer on a program, with a given configuration. The fuzz configuration consists 
of all variables/parameter values relevant to the execution of the fuzzer. These include:

• the program under test itself;

• possibly, one or multiple seeds, i.e. inputs that can be perturbed to produce random valid inputs 

for the testing. The seeds are collected in a so-called seed pool;

• possibly, variables which can be used to mutate the seeds in the seed pool.

Finally, for the execution of a fuzzer, a bug oracle is important; the bug oracle is an abstract 
representation of the ‘thing’ which determines whether the test passes or fails. The bug oracle 
effectively symbolizes the security policy being tested.


Generic fuzzing algorithm 
Fuzzing algorithms can be expressed in a generic structure, which is given by the following 
algorithm:

C = PreProcess(C) 
while (timeElapsed < timeLimit && Continue(C)) { 
 conf = Schedule(C, timeElapsed, timeLimit) 
 testCases = InputGen(conf) 
 newBugs, executionInfo = InputEval(conf, testCases, oracle) 
 C = ConfUpdate(C, conf, executionInfo) 
 bugs.add(newBugs) 
} 
return bugs 

Now, we will discuss the steps of this algorithm in somewhat more detail. First of all, we note that 
C is the set of all fuzz configurations, while conf is the fuzz configuration used in a given iteration 
of the fuzzer.

• PreProcess is a procedure which prepares the set of fuzz configurations/seeds. This can 

include aspects such as choosing the optimal seeds, but it can also involve adjusting the 
program under test or preparing some sort of model to select test cases.


• Schedule is a procedure which determines the fuzz configuration to be executed in this 
iteration of the algorithm. The goal of this procedure is to choose the ‘optimal’ configuration at 
this point in time. Choosing the optimal configuration can involve the time already used and the 
available time.


Update step Mainly based on taking unions Mainly based on taking intersections

Reaching definitions analysis Very busy expressions analysisProperty

 More formally, we speak of a program under test, or PUT. For ease of reading, we will simply 2

call this ‘program’ in this summary.
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• The main goal of the Schedule algorithm is to solve the Fuzz Configuration Scheduling (or 
FCS) problem, which entails the need to find a balance between looking for more favourable 
future decisions (exploring) or performing fuzzing to find actual outcomes (exploiting).


• InputGen is a procedure which uses the selected fuzz configuration to generate test cases to 
be executed. For example, this can be done on the basis of a model, by mutating seeds, by 
performing symbolic execution of the PUT or by mutating the PUT itself.


• InputEval is a procedure which uses the generated test cases, the fuzz configuration and the 
bug oracle to execute the test cases. This produces both a set of (possibly newly) discovered 
bugs and some information on the execution of the test cases, which can be used in the next 
step to optimally modify the set of fuzz configurations.

• The bug oracle can perform several functions. For instance, it may indicate

• Whether the program crashed

• Whether there was a memory violation/error

• Whether there was undefined behavior

• Whether there was an input validation error

• Whether the behavior was the same as another program. This check is known under the 

name ‘semantic difference’.

• One problem that needs to be solved by the InputEval procedure is the Fuzzer Taming 

problem, which effectively deals with the ranking/prioritization of test cases (note: not of 
bugs) according to the uniqueness and severity of the found bugs.


• ConfUpdate is a procedure which modifies the set of fuzz configurations to ideally produce a 
minset: a minimal set of test cases that maximizes the coverage metric. Black-box fuzzers tend 
to skip this step, while grey-box and white-box fuzzers can use (for example) an evolutionary 
algorithm to optimize their fuzz configuration and seed pool. This procedure can use the current 
configuration, the set of all fuzz configurations and the execution info of this iteration as inputs, 
and produces an updated set of fuzz configurations as output.


Memory and type safety 
A program execution is memory-safe if:

1. Pointers are only assigned through standard language features, and;

2. Pointers are only used to access memory allocated to those pointers.


A program is memory-safe if all of its executions are memory-safe.

A language is memory-safe if all possible programs written in that language are memory-safe.


There are two types of memory safety:

I. Spatial memory safety, which involves pointers reading/writing out of bounds.

II. Temporal memory safety, which involves issues like use after free, double free and dangling 

pointers (i.e. related to pointers existing after free).


Type safety is strictly better than memory safety. A type-safety error occurs when memory is 
interpreted as a different type of variable than it was intended/assigned for. Abstractly speaking, 
type systems allow a programmer to commit to the set of values (i.e. type) that variables can hold 
and how they should be interpreted.

Type checking can be done at run-time (dynamic type checking) or at compile time (static type 
checking). The automatic detection of types is called type inference.


When complex types are used, the type system may implicitly re-interpret/convert types if these 
types (and the language) are compatible. Complex types may be equivalent, or one type may be a 
subtype of the other. When additional information is needed to compare types, this can be done 
in two ways:

• Nominal typing relies on the explicit definitions of types.

• Structural typing relies on the concrete structure of the type at compile time.
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Web software security 
Reasons for using database management systems (DBMS) 
Database management systems can be used to help keep long-term data consistent and valid. 
They have four main properties, which help to guarantee validity of data even when errors and/or 
power failures occur:


SQL injection 
For a general introduction to SQL injection as a strategy (without technical details), refer to my 
summary for 2IMS20. In this document, I will add a few notes on SQL syntax which may be useful 
on an exam.


The syntax -- indicates the beginning of a comment. For instance, the line

SELECT * FROM table; -- this text gets ignored completely 

ignores the text after the double dash. Similarly, we have syntax for comments which can span 
multiple lines. These can be written using the symbols /* and */. An example could look like this:

SELECT * FROM table; /* 
This line will not be executed. 
*/ 
SELECT * from table; -- but this line will be executed. 

Some other useful pieces of syntax, taken from the slides:


Briefly re-summarized, a countermeasure for SQL injection is input validation, which can 
encompass whitelisting and/or sanitization, which includes the use prepared statements. Other 
countermeasures include data encryption and applying the principle of least privilege to table 
access.


HTTP ephemeral states 
State in HTTP is ephemeral; that is, upon every request, some state/session (identifier) needs to 
be sent to the server. There are multiple ways to realise the storage of state on the client. These 
include the use of cookies or hidden fields in HTML documents. One disadvantage of using 
hidden fields is that all information is lost when the browser closes.


Atomic Statements are a single unit; they are fully executed or not at all.

Consistent Database states are always valid; there are no ‘temporary invalid states’ (at least, they are 
not written to the database).

Isolation Concurrently executed transactions behave as if done sequentially.

Durability Once a transaction finishes, it persists, even in case of e.g. power failure.

Query Effect

SELECT Balance FROM Accounts WHERE 
(UserID=‘Bob’ AND Password=‘5678’);

Reads Bob’s balance

INSERT INTO Accounts Values(‘Charlie’, ‘90AB’, 
200); -- a comment

Adds a new user Charlie, including data

UPDATE Accounts SET Balance=‘200’ WHERE 
UserID=‘Alice’

Overwrites Alice’s balance to 200

DROP TABLE Accounts; /* Yet another, possibly 
multiline comment */

Deletes the entire table named Accounts
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Cookies have multiple fields. These include its value, the domain it should be returned to, a path 
on that domain and an expiry date (which can also be end of session/upon closing the browser). It 
should be noted that cookies can be stolen.


CSRF 
CSRF, or cross-site request forgery, is an attack in which the attacker attempts to make the victim 
perform an action which advantages the attacker on a site not under the control of the attacker. 
(In other words, the attacker lets the client do what the attacker themselves are not allowed to do.) 
In general, such an attack aims to make the victim perform a request to the site which modifies 
state, such as a request which makes a payment/bank transfer. A site is vulnerable to an CSRF 
attack if it does not properly check whether a state-modifying request was purposefully initiated 
by the client from the legitimate website. Methods to prevent CSRF attacks include requiring a 
server-provided token (e.g. one included in legitimate forms) to be sent back with state-changing 
requests or (albeit less commonly) checking the Referrer header to see whether the submission 
came from a page on a trusted domain.


In general, it is often thought that the state-change mentioned in CSRF attacks require the user to 
be authenticated (and the attack aims to let an authenticated user perform the request on the 
attacker’s behalf). However, different methods exist. In particular, an attacker can attempt to have 
the victim login to an account under the control of the attacker. Data entered into that account 
can then be accessed by the attacker as well.


JavaScript’s same origin policy 
The origin of a page is defined to be the combination of the protocol, domain and port. By the 
same origin policy, scripts included into page A can only access data in page B if they have the 
same origin.


XSS 
XSS attacks aim to circumvent the same origin policy by ‘tricking’ the user’s browser into 
believing the attacker’s script comes from the legitimate site. Using this script, data such as 
keyboard input or cookie information can be exfiltrated to the attacker. There are several variants 
of XSS:


Countermeasures to stored XSS include checking attachments to see whether they contain 
scripts, using multi-factor authentication for state-modifying requests and setting the HttpOnly 
flag on cookies.

Countermeasures to reflected XSS include avoiding the use of echoing and performing input 
validation to ensure the input does not contain any scripts.


Number theory and cryptography 
Note: this section will only briefly mention the main points from the lectures, since there would be 
too many things to mention otherwise. 

Persistent XSS/ 
Stored XSS

The attacker stores the script on the legitimate website, and then loads it from there. 
This usually involves a mechanism where the attacker can upload content to the site, 
such as a comment section or an attachment functionality.

Reflected XSS The attacker makes the user send the script to the server, which then (wrongfully) 
sends it back to the user. Examples of this attack include a search functionality which 
echoes back the user’s query.

Server-side XSS In server-side XSS, the attacker makes the server access a website. This can be used 
to avoid firewalls, access resources from a trusted IP (e.g. localhost) or access 
backend systems.
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Extended Euclidean algorithm 
The Extended Euclidean algorithm, or EEA, can be used to compute the greatest common divisor 
(gcd) of two integers  and , and compute integers  and  such that .


 is called the EEA representation of  with respect to .


When  and , we can compute  as the value of  produced by 
executing the Extended Euclidean algorithm on  and .


Chinese remainder theorem 
The Chinese remainder theorem (CRT) allows for finding a unique solution for , 
given a system of the following congruences:







This solution is given by , where  and  are obtained by 
applying the extended Euclidean algorithm to  and  (note: not to  and ). Also, note that  and 
 should be with the values (out of  and ) from which they were taken in the EEA. That is, if we 

were to take the EEA with  and  (i.e. because ), the roles of  and  would swap. Note 
that  is always multiplied with  and  is always multiplied with .


Side-channel attacks 
Side-channel attacks are based on extra information that is leaked from the implementation of the 
protocol, instead of from the design of the protocol/algorithm itself. Such attacks can in principle 
leak secret keys, and tend to be based on:

• Timing (e.g. time used to perform branches, memory cache)

• Error handling (e.g. Bleichenbacher oracle)

• Power analysis

• Electromagnetic leaks

• Sound


Timing attacks based on memory caching can partially be prevented by avoiding the use of data-
dependent table lookups. In general, however, any form of extra information (which can include 
compiler-introduced optimizations) should be suppressed. Another countermeasure for side-
channel attacks is to disturb correlations between extra information and data in a way that does 
not destroy functionality. A general way of doing this would be to insert some form of randomness 
into (the steps of) the computation.


RSA 
The private and public key are related according to the relation




where . Encryption occurs by raising the message to the power , i.e. 

. Decryption occurs by raising to the power , i.e. . Note that 
signing  is effectively the same as decrypting, while verifying the signature is effectively the same 3

as encrypting.


RSA with CRT 
The computation of RSA signatures can be sped up by first computing the following 
representation of the private key:


a b u v gcd(a, b) = u ⋅ a + v ⋅ b
u, v gcd(a, b) a, b

a > b gcd(a, b) = 1 b−1 mod a v
a b

x mod (p ⋅ q)
x = a mod p
x = b mod q

x = b ⋅ u ⋅ p + a ⋅ v ⋅ q mod (p ⋅ q) u v
p q a b u

v p q
q p q > p u v

b p a q

d = e−1 mod φ(n)
φ(n) = p ⋅ q e

c = me mod n d m = cd mod n

 To prevent some types of attacks, however, we generally do not sign the message itself but a 3

hash of the message.
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Then, the signature can be computed by first computing two ‘parts’ of it, which are known as  
and :







In general, we replace the message  with its hash . This gives the system of congruences






which can then be solved for  by applying the Chinese remainder theorem. This gives




As a reminder to myself: it seems that the use of Euler’s -function is only necessary when 
computing ,  and  (and not when computing signatures or their components ,  and ).

Power analysis 
Power analysis is the use of data on power consumption (e.g. in the square-and-multiply 
algorithm) to determine secret information (e.g. private keys).


Fault injection attacks 
In a fault injection attack, the attacker deliberately makes a device (e.g. a smartcard) fail a 
particular computation in order to have it leak information. The RSA with CRT method described 
above is vulnerable to such an attack: if either  or  is computed incorrectly, while the other 
one remains correct, the difference between the hash and the resulting signature raised to the 
power  is divisible by one of the two factors  or . In other words, we have that 

. After obtaining one factor of , the second one can easily be 
obtained by dividing  by the obtained factor.


Some countermeasures against attacks like this one include the following:

• Blind the value of 

• Blind the modulus 

• Blind some of the group elements (e.g. hashes or signatures)

• Verify the result of the computation before releasing it


Padding oracle 
A padding oracle attack is based on issues related to error handling and outputs. The rough idea 
behind such an attack is that implementations of cryptographic protocols tend to require that the 
message is padded (i.e. zeros are prepended/appended to make the message fit in the size 
supported by the cryptographic system). When the server implicitly or explicitly indicates whether 
the padding is valid, this can be used to reconstruct the message by the attacker. Generally, the 
guessing can be done one byte at a time, which means that the attacker can do this significantly 
faster than brute-force.


Schnorr signatures 
Schnorr signatures are a signature scheme based on discrete logarithms. The key generation is 
based on a Diffie-Hellman scheme, and works as follows:

1. Draw a random , which is output as the secret key 

2. As the public key, output 


The signing scheme works as follows:

1. Draw a random 

2. Compute 


dp = d mod φ(p)
dq = d mod φ(q)

sp
sq

sp = mdp mod p
sq = mdq mod q

m h(m)
s = sp mod n
s = sq mod n

s
s = sq ⋅ u ⋅ p + sp ⋅ v ⋅ q mod n

φ
d dp dq s sp sq

sp sq

e p q
gcd (n, (s′ )e − h(m)) ∈ {p, q} n

n

d
n

a ∈ ℤq sk
pk = gsk mod p = ga mod p

k ∈ ℤq
s1 = H (m | |gk mod p)
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3. Compute 

4. Output 


Verification of the signature occurs by checking whether the following equation holds: 



The Schnorr signature scheme is vulnerable to attacks based on randomness; if two signatures 
use the same value of , then, by rewriting the equation for  to have  on one side, we have two 
equations for  with two unknowns:  and , which is the secret key.

In my experience, the main things to remember about this scheme are the following; the rest of 
the scheme should be reconstructable from that:

• The equation for ;

• The fact that equations which involve  are taken , while equations which do not 

involve  are taken .

• Possibly, the fact that .

• Possibly, the fact that the hash is taken of the message concatenated with something 

equivalent to .


Attacks on randomness do occur in practice: in particular, the NSA managed to have the (later 
found to be backdoored) dual EC pseudorandom number generator standardized.

s2 = k − a * s1 mod q
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